
nextcloud.com

End-to-end encryption design
Version: September 20, 2017

Contents

Introduction... 1

Requirements.. 2

Security properties.. 2

Usage of widely available and tested libraries for crypto primitives... 2

Sharing functionality... 3

Optional central data recovery... 3

Simple multi-device management... 3

Simple authenticated key exchange.. 3

Support for HSM.. 4

Versioning.. 4

Accepted feature loss.. 4

Technical implementation.. 5

Adding an end-to-end encrypted device... 5

Initial device.. 5

Further devices... 6

Mark folder as end-to-end encrypted... 7

Create metadata file... 7

Update metadata file... 9

Uploading a file into an end-to-end encrypted folder.. 10

Uploading new files.. 10

Updating existing files... 10

Accessing encrypted files.. 11

Sharing encrypted folders to other users... 11

Key discovery of other users.. 11

Add someone to an end-to-end encrypted folder... 12

Remove someone from an existing share.. 13

Edgecases.. 13

Handling of complete key material loss... 13

Illustrations... 14

How to create and sync identity.. 14

How to encrypt folders and add files... 15

How to access encrypted files.. 16

How to share encrypted folders.. 16

How to remove users from encrypted folders... 17

1

Introduction
With the announcement of the Nextcloud end-to-end encryption tech-
preview, we’d like to invite you to scrutinize our source code and cryp-
tographic approach.

Please note that end-to-end encryption feature is a work-in-pro-
gress and this document may describe functionalities or approach-
es not yet implemented in our testing releases. This document is
meant as authoritative implementation guideline for our clients.

For the sake of having smaller and incremental steps towards the final
implementation we’re going to continuously release updated builds of
our clients.

We are looking forward to your input to refine our approach towards
client side encryption. In addition, we will also make sure to validate our
approach on-time by external cryptographic experts.

2

Requirements
The end-to-end encryption has to fulfill the following business and technical criteria.

Security properties
The following security properties have to be fulfilled:

•	 Access to ciphertext must not leak directory structure nor file names or content.

•	 Leaking the number of files in an encrypted folders is an accepted risk.

•	 Public keys of users must be auditable

•	 Once a user has been removed from an encrypted folder they should have no relevant key material to
encrypt files updated or created in the future

•	 Encrypted folders must use an encryption scheme fulfilling the following criteria:

•	 Confidentiality

•	 No one, except the legitimate recipients, must have access to the encrypted documents.

•	 Integrity

•	 Even with writable access to the ciphertext one should not be able to tamper with the data. In
case an encrypted referenced file is deleted from the file system but still found in the metadata
a warning should be displayed to the user.

•	 Authenticity

•	 Authenticity of the files has to be guaranteed.

Usage of widely available and tested libraries for crypto primitives
We believe that for security-sensitive functionalities relying on existing and proven libraries is an essential
requirement. Thus we require that:

•	 The used library for cryptographic primitives must be in use widely.

•	 The used library for cryptographic primitives has undergone successful security audits.

Also due to our wide range of supported systems, the library must be available for the following of our sup-
ported environments:

•	 iOS 9+

•	 Android 6.0+

•	 Mac OS X 10.9+

•	 Windows 7+

•	 commonly used Linux distributions

•	 PHP 7.0+

Note: While we don’t have any current plans to add support for potential server-side decryption we
want to keep this possibility open for the future.

3

Sharing functionality
Existing client-side encryption solutions often prevent the sharing of encrypted files, the Nextcloud end-to-
end encryption must offer support for the following sharing scenarios:

•	 Sharing encrypted folders with other users

The following sharing scenarios are considered out of-scope:

•	 Sharing single files or folders from an encrypted folder

•	 Sharing encrypted folders with whole groups

Optional central data recovery
While End-to-End encryption is meant to prevent access to data for other parties the reality is: People may
lose their encryption keys. While in an home user environment this may be acceptable, in an enterprise this
can have grave implications. Thus an optional central data recovery has to be available offering the following
capabilities:

•	 Central recovery key per instance can be generated

•	 Central recovery key must not be stored on the instance and can be safely exported (e.g. to be stored in
a physical vault)

•	 All data will also be encrypted to the central recovery key when enabled

•	 Users must be prominently warned in the UI of their clients if a central data recovery key is enabled

•	 When a central data recovery key is enabled the existing end-to-end encrypted folders must not be af-
fected

Simple multi-device management
Access to encrypted data should easily be possible from any device the end-user owns, this includes all
mobile devices as well as desktop devices.

Thus:

•	 Sharing keys between existing devices must be frictionless

•	 Newly added devices should have access to all previously encrypted data

Simple authenticated key exchange
Key exchange is a key problem of any cryptographic system, on one hand one wants to ensure that the key
of the participating parties is authentic. On the other hand, manual comparisons of fingerprints are cumber-
some and rarely something that regular users can be bothered to do.

A secure and yet simple system has to implement the following properties:

•	 Key exchange between parties should be frictionless

•	 Exchanged keys should be auditable

4

Support for HSM
To fulfill enterprise security requirements it should be possible that key material is generated by a hardware
security module. Thus offering strong authentication, tampering resistance and a complete audit trail.

Versioning
The protocol has to support versioning in case of future changes in the metadata or cryptographic handling.

Accepted feature loss
Since the data is not accessible to the server and to simplify the implementation a loss of the following fea-
tures is acceptable:

•	 Server-Side trash bin

•	 Server-Side versioning

•	 Server-Side search

•	 Server-Side previews

•	 Access to folders via web interface

•	 Sharing to groups

•	 Sharing at the level of individual files

5

Technical implementation
The encryption is based upon an asymmetric cryptographic system. Every user has exactly one private and
public key pair. The following steps will walk through the current technical implementation of the encryption.

Adding an end-to-end encrypted device
As a first step a device has to be added to an account,
a device can be anything able to run one of our sup-
ported clients.

Depending on whether an end-to-end encrypted
device already has been added to an account, the
device will have to create new key material or use ex-
isting key material. To check whether a certificate has

already been issued or not the /ocs/v2.php/apps/
end_to_end_encryption/api/v1/public-key
endpoint should be used.

 In addition, the client has to download the server’s
public certificate from /ocs/v2.php/apps/end_to_
end_encryption/api/v1/server-key and use this
to verify the certificate chain in all future operations.

Initial device
When a device is initially added to an account the device has to generate all relevant key material for the user
account and provision those on the server.

First, the client has to generate the relevant key material:

1.	 Client has to generate a new X.509 certificate request and private key.

1.	 CN of X.509 certificate must be set to the currently logged-in User ID

2.	 Client uploads the X.509 certificate request to the server by sending the certificate request URL encoded
as parameter csr to /ocs/v2.php/apps/end_to_end_encryption/api/v1/public-key.

3.	 Server issues a certificate if the CN matches the current user ID.

4.	 Server returns the issued certificate.

5.	 Client stores the private and the public key in the keychain of the device.

Graphic: How to create and sync identity (Part 1)

Private keyCertificate request

Client

Server Device keychain

1 1

2

3

1 Client generates a
new X.509 certificate
request and private
key.

2 Certificate gets signed
by server.

3 Private key is stored in
keychain of device.

6

In a second step, the private key will be stored en-
crypted on the server to simplify the addition of
further devices:

1.	 Client generates a 12 word long mnemonic from
the English BIP-0039 word list. The word list
contains 2048 words, thus resulting in 2048^12
possible key combinations.

2.	 Client encrypts the private key using AES/GCM/
NoPadding as cipher (128 bit key size) and uses
PBKDF2WithHmacSHA1 as key derivation, as
password the in step 1 generated mnemonic is
used.

3.	 Client uploads the encrypted X.509 private key
to the server by sending the encrypted private
key URL encoded as parameter privateKey to /
ocs/v2.php/apps/end_to_end_encryption/
api/v1/private-key.

4.	 The mnemonic is displayed to the user and the
user is asked to store a copy in a secure place.

5.	 The mnemonic is stored in the keychain of the
device.

In case a user loses their device they can easily re-
cover by using the mnemonic passphrase. The mne-
monic passphrase can also be shown in the client
settings in case the user forgets their mnemonic.
Displaying the mnemonic requires the user to enter
their PIN/fingerprint again on mobile devices.

Client encrypts private key with 12
word mnemonic and uploads it to the
server.

Mnemonic is displayed to users and
they are asked to store it.

Mnemonic is stored in keychain of de-
vice.

Client

Private key

�
User

Mnemonic

Device
keychain

Server

1

2 3

1

1

1

2

3

Further devices
In case a certificate exists already for the user the client has to download the existing private key. This is done
the following way:

1.	 Client downloads private key from the /ocs/v2.php/apps/end_to_end_encryption/api/v1/
private-key endpoint.

2.	 Client asks the user for the mnemonic and decrypts the private key using AES/GCM/NoPadding as cipher
(128 bit key size) and PBKDF2WithHmacSHA1 as key derivation.

3.	 Client checks if private key belongs to previously downloaded public certificate

4.	 Client stores the private key in the keychain of the device.

Graphic: How to create and sync identity (Part 2)

7

Graphic: How to add further devices

New devices

Private key MnemonicCertificate

Device
keychain

1

2
3

4

3

1 New devices download
the encrypted private
key.

2 Private key gets de-
crypted with the 12
word mnemonic from
the user.

3 New devices check if
private key belongs to
certificate.

4 Private key and mne-
monic are stored in the
keychain of the device.

Creating an end-to-end encrypted folder
To create an end-to-end encrypted folders multiple steps have to be performed. First of all, data access to
such folders happens via our regular WebDAV API available at /remote.php/dav/$userId/files.

Mark folder as end-to-end encrypted
After creating a folder via WebDAV the folder has to be flagged as end-to-end encrypted, this can be performed
by sending a PUT request to /ocs/v2.php/apps/end_to_end_encryption/api/v1/encrypted/<file-
id> whereas <file-id> has to be the file ID indicated by our WebDAV API.

Once this flag has been set the folder will not be accessible anymore via web and also not displayed to regular
DAV clients. Only empty folders can be marked as end-to-end encrypted.

Create metadata file
Every folder contains a metadata file containing the following information:

•	 Metadata of files (filename, mimetype, …)

•	 Access list to the folder

•	 Key material for files in the folder

The metadata is a JSON document with the following structure. The metadata->metadataKeys elements are
encrypted to the recipients public keys and the values are used to encrypt the single file metadata elements.

In case the central data recovery key is enabled the metadata will also be encrypted towards the servers
central data recovery key. Clients must show a prominent warning to the users for such scenarios.

8

Graphic: How to encrypt a folder

MetadataKeyMetadata file

Folder

Server

1

2 3

4

5

1 Create folder and mark
to server as encrypted.

2 Generate metadata file.

3 Generate metadataKey,
encrypted to all public
keys that have access
to the folder.

4 Use metadataKey to
encrypt all values in
metadata file.

5 Store encrypted meta-
data on server.

The only unencrypted elements in the JSON document is the version of the metadata file. The other informa-
tions are all encrypted either based on the public key or the actual metadata keys. The encrypted JSON array
elements should just be encrypted as simple string element. This means that “foo => [bar, foo]” should be-
come “foo => “ciphertext” and the clients are responsible for decoding this ciphertext in a proper array again

The metadata has to be created by sending a POST request to /ocs/v2.php/apps/end_to_end_
encryption/api/v1/meta-data/<file-id>, whereas <file-id> has to be the file ID indicated by our WebDAV
API. As POST parameter metaData with the encrypted metadata has to be used.

9

Update metadata file
To keep the metadata and the file in sync locking is
required. The client needs to lock the encrypted fold-
er. If the lock operation succeeded the file the server
will return a successful response together with a to-
ken in the response body. In case of a lost connection
the client can restart the operation later with another
“lock” request, in this case the client should send the
token with the new lock call. This enables the server
to decide if the client is allowed to retry the upload.

After locking was successful, the client will upload the
encrypted file and afterwards the metadata file. If
both files are uploaded successful the client will finish
the operation by sending a unlock request.

To lock the metadata a POST request to /ocs/
v2.php/apps/end_to_end_encryption/api/v1/
lock/<file-id> has to be sent. Whereas <file-id>

has to be the file ID indicated by our WebDAV API.
To add an existing lock token it can be sent as token
parameter.

To update the metadata a PUT request to /ocs/
v2.php/apps/end_to_end_encryption/api/
v1/meta-data/<file-id> has to be sent. Whereas
<file-id> has to be the file ID indicated by our Web-
DAV API. As parameters “token”, which contains the
current lock token, and “metadata”, containing the
encrypted metadata have to be sent.

To unlock the metadata a DELETE request to /ocs/
v2.php/apps/end_to_end_encryption/api/v1/
lock/<file-id> has to be sent. Whereas <file-id>
has to be the file ID indicated by our WebDAV API.
The previously received lock token has to be sent as
token parameter.

10

Uploading new files
In case a new file is uploaded the client has to do the
following steps:

1.	 Generate a new 128-bit encryption key for the file
and encrypt it using AES/GCM/NoPadding.

2.	 Generate a random identifier for the file (e.g. an
UUID) and upload the encrypted file via WebDAV
using the random identifier as file ID

3.	 Add new file to the files array in the metadata file

4.	 Update and lock the encrypted folder as de-
scribed in “Update metadata file”. The latest
metadataKey should be used to encrypt the
metadata.

Updating existing files
In case an existing file is updated the client has to do
the following steps:

1.	 Generate a new 128-bit encryption key for the file
and encrypt it using AES/GCM/NoPadding.

2.	 Lock the encrypted folder

3.	 Use the existing random identifier for the file and
upload the encrypted file via WebDAV using the
existing random identifier as file ID

4.	 Update the file in the files array of the metadata

5.	 Update and unlock the metadata file. The latest
metadataKey should be used to encrypt the
metadata.

Uploading a file into an end-to-end encrypted folder
To upload a file in an end-to-end encrypted folder the client has to differentiate whether it is a new file or an
existing file that gets updated.

The client can verify whether it is a new file or an existing one by downloading the metadata and checking if
the “files” array contain the referenced file.

Generate new 128bit encryption key
for file.

Encrypt it using AES/GCM/NoPadding.

Encryption
key

�
User File

1 2

1

2

Generate random identifier (UUID)
and upload encrypted file, using ran-
dom identifier as file ID.

Add new file info to files array in meta-
data file, encrypted with metadataKey.

Update metadata on server.

UUID Encrypted
file

Server

Metadata
file

File info

MetadataKey

1

2
3

3

1

2

Graphic: How to upload new files

11

Accessing encrypted files
To access encrypted files the client has to do the following steps:

1.	 Download actual metadata of encrypted folder

2.	 Loop over “files” array and decrypt the array with the newest metadataKey. Use metadataKey to decrypt
to files array.

3.	 Download the referenced files using WebDAV and decrypt using AES/GCM/NoPadding (128bit) and using
the referenced file keys in the file array.

Graphic: How to access encrypted files

MetadataKeyMetadata

Encrypted folder

Files arrayFile

2

1

3

4

1 Download metadata of
encrypted folder.

2 Use private key to
decrypt metadataKey.

3 Use metadataKey to
decrypt to files array.

4 Download the files
and decrypt them
using 128bit AES/GCM/
NoPadding using keys
from the files array.

In case a file is referenced in the metadata but cannot be found on the WebDAV file system the user should
be warned about this. If the file exists locally but not on the file system the client should re-upload the file.

Sharing encrypted folders to other users

Key discovery of other users
As a PKI approach for encryption is used every certificate is issued by a central root authority. By default the
Nextcloud server acts as a Root Authority and issues the certificates from the CSRs.

The clients do the following when trying to establish a trust relationship to another user:

1.	 Check if a certificate for the specified User ID is already downloaded (Trust On First Use (TOFU))

1.	 If an certificate is available this one will be used

2.	 If none is available the client will continue at 2.

12

2.	 Query the user certificates by sending GET request to the /ocs/v2.php/apps/end_to_end_encryption/
api/v1/public-key endpoint and sending a JSON encoded users parameter containing the specified
UIDs

3.	 Verify if the certificate is issued by the downloaded server public key.

1.	 If yes: Use this one.

2.	 If no: Show a warning that initiating an encrypted share isn’t possible to the user.

4.	 Store the user certificate locally for next TOFU operations

Note: We’re considering adding support for additional security measures such as Certificate Transparency
Logs or HSM devices. Thus further reducing the risk of a hacked server.

Graphic: How to share an encrypted folder

Server

Certificate

Metadata
Key

�
Recipient
public key

5

Device keychain

1 1

23

4

Encrypted folder

�
User

6

1 Check for certificate
of specified user ID or
download it from the
server (Trust On First
Use / TOFU).

2 Verify if the certificate
is issued by the server.

3 Store user certificate
locally.

4 Re-encrypt metadata-
Key to recipient public
key.

5 Upload updated meta-
data to server.

6 Share folder with user
through OCS sharing
API.

Add someone to an end-to-end encrypted folder
To create a share the following actions have to be performed:

1.	 The file has to be shared via the OCS sharing API to the recipient

2.	 The metadataKeys must be encrypted to the recipient public key

3.	 The recipient is added to the “sharing” array

13

Remove someone from an existing share
To remove someone from an existing share the following actions have to be performed:

1.	 The file has to be unshared via the OCS sharing API to the recipient

2.	 A new metadataKey must be generated

3.	 The recipient is removed from the “sharing” array

4.	 The metadata-key array must be re-encrypted to everyone except the recipient

Graphic: How to remove someone from an existing share

Metadata
Key

User

Encrypted folder

�

�

Users

Server
1

2 3

1 Unshare encrypted
folder with user
through OCS sharing
API.

2 Generate new
metadataKey and
encrypt to everyone
who now has access.

3 Upload metadata to
server.

Edgecases

Handling of complete key material loss
Right now a complete key material loss means that other users that already had a share with the user will not
be able to share new encrypted folders since the protocol uses TOFU for initiating shares.

However, considering the fact that the user has a mnemonic passphrase to recover their key and any con-
nected device (e.g. their smartphones) also has a way to recover the mnemonic we consider this an edge-case
at the moment.

We’re investigating how a CSR approach here could help in such edge-cases at least to allow new share again.
We do however encourage users to make sure to not lose access to all their devices as well as their recovery
mnemonic at the same time.

14

Illustrations

How to create and sync identity

Client generates a new X.509 certificate
request and private key.

Certificate gets signed by server.

Private key is stored in keychain of device.

Nextcloud end-to-end encryption
Create and sync identity

Private keyCertificate request

Client

Server Device keychain

Client encrypts private key with 12 word
mnemonic and uploads it to the server.

Mnemonic is displayed to users and they
are asked to store it.

Mnemonic is stored in keychain of device.

Client

Private key

�
User

Mnemonic

Device
keychain

Server

1 1

2

3

1

2

3

1

2

3

1

2 3

New devices download the encrypted
private key.

Private key gets decrypted with the 12
word mnemonic from the user.

New devices check if private key belongs
to certificate.

Private key and mnemonic are stored in
the keychain of the device.

New devices

Private key MnemonicCertificate

1

2

3

Device
keychain

4

1

1

1

2
3

4

3

2

1

3

15

How to encrypt folders and add files

Create folder and mark to server as en-
crypted.

Generate metadata file.

Generate metadataKey, encrypted to all
public keys that have access to the folder.

Use metadataKey to encrypt all values in
metadata file.

Store encrypted metadata on server.

Nextcloud end-to-end encryption
Encrypting a folder and adding files

MetadataKeyMetadata file

Folder

Server

Generate new 128bit encryption key for
file.

Encrypt it using AES/GCM/NoPadding.
Encryption

key

�
User

1

2

3

1

2

Generate random identifier (UUID) and
upload encrypted file, using random identi-
fier as file ID.

Add new file info to files array in metadata
file, encrypted with metadataKey.

Update metadata on server.

UUID

1

2

4

5

1

2 3

4

5

File

1 2

Encrypted
file

Server

Metadata
file

File info

MetadataKey

1

2

3

2

1

3

3

16

How to access encrypted files

Download metadata of encrypted folder.

Use private key to decrypt metadataKey.

Use metadataKey to decrypt to files array.

Download the files and decrypt them using
128bit AES/GCM/NoPadding using keys from
the files array.

Nextcloud end-to-end encryption
Accessing encrypted files

MetadataKeyMetadata

Encrypted folder

Files array

1

2

3

File

2

1

3

4

4

How to share encrypted folders

Check for certificate of specified user ID or
download it from the server (Trust On First
Use / TOFU).

Verify if the certificate is issued by the server.

Store user certificate locally.

Re-encrypt metadataKey to recipient public
key.

Upload updated metadata to server.

Share folder with user through OCS sharing
API.

Nextcloud end-to-end encryption
Sharing encrypted folder

Server

1

2

3

Certificate

Metadata
Key

�
Recipient
public key

4

5

5

6

Device keychain

1 1

23

4

Encrypted folder

�
User

6

17

How to remove users from encrypted folders

Unshare encrypted folder with user through
OCS sharing API.

Generate new metadataKey and encrypt to
everyone who now has access.

Upload metadata to server.

Nextcloud end-to-end encryption
Removing a user from an encrypted folder

Metadata
Key

User

Encrypted folder

1

2

3 �

�

Users

Server
1

2 3

© 2017 Nextcloud GmbH, subject to change without notice.

Nextcloud GmbH
Kronenstr. 22A
70173 Stuttgart
Germany

Email	 sales@nextcloud.com
Phone	 +49 711 896656-0
Fax	 +49 711 896656-10

nextcloud.com

mailto:sales@nextcloud.com

	Introduction
	Requirements
	Security properties
	Usage of widely available and tested libraries for crypto primitives
	Sharing functionality
	Optional central data recovery
	Simple multi-device management
	Simple authenticated key exchange
	Support for HSM
	Versioning

	Accepted feature loss
	Technical implementation
	Adding an end-to-end encrypted device
	Initial device
	Further devices
	Mark folder as end-to-end encrypted
	Create metadata file
	Update metadata file

	Uploading a file into an end-to-end encrypted folder
	Uploading new files
	Updating existing files
	Accessing encrypted files

	Sharing encrypted folders to other users
	Key discovery of other users
	Add someone to an end-to-end encrypted folder
	Remove someone from an existing share

	Edgecases
	Handling of complete key material loss

	Illustrations
	How to create and sync identity
	How to encrypt folders and add files
	How to access encrypted files
	How to share encrypted folders
	How to remove users from encrypted folders

